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This work describes two algorithms for computing the 
angular rate and attitude in case of a gyro failure in a 
spacecraft (SC) with a special mission profile. The source of 
the problem is presented, two algorithms are suggested, an 
observability study is carried out, and the efficiency of the 
algorithms is demonstrated. 
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1. INTRODUCTION 

Consider a spacecraft (SC) that has two two-axis 
gyroscopes, which are arranged such that one input axis of 
one of the gyros is aligned along the body x-axis and the XI 
other input axis is aligned along the body z-axis. The input 
axes of the second gyro are aligned along the body y and z- 

axes is still measured; namely, about the z-axis and one of 
the other two. The SC considered has also a vector Fig. 1: The Geometry and Coordinate Systems Describing 
measuring devise like a sun-sensor. It carries also a second the Angular Motion Components of the Spacecraft. 
vector-measuring device but it is assumed that this sensor 
failed too. The angular motion of the SC consists of two 

x2 
axes. If only one gyro fails then the rate about two body XI 

of a failure of one of the gyros, the angular velocity and 
rotations as described in Fig. 1. One rotation, at radian 
per second, is about a fixed line in inertial space, and the 
other, at i radian per second, is about the satellite z-axis. 
The body z-axis is tilted by a radians with respect to some 
line fixed in inertial space. It is require that in the event 
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attitude of the SC can still be fully determined. There were 
two cardinal questions concerning such failure; namely, can 
the full angular rate vector and attitude be determined, and 
if it can be, how to do it. An answer to the first question is 
supplied by an observability check; that is, if the system 
state vector, containing the attitude and angular rate vector, 
is observable with one gyro and one vector measurement, 
then it is possible to estimate the rate and attitude of the 
SC. In this case what is left to do is to devise an algorithm 
that does it. These two questions are addressed in this work. 
As will be shown in the ensuing, the answer to these 
questions is positive. Two algorithms are presented in this 
work, one of which may supply the rate and attitude of the 
SC when one gyro fails. 
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2. BODY ANGULAR KINEMATICS 

The body angular rate and attitude definitions are presented in 
Fig. 1 in terms of three Euler angles. In order to describe the 
SC motion and the associated measurements we define four 
coordin,ate systems. The first system is the inertial coordinate 
system (designated by I). The center of this system is at the 
origin of the SC coordinates, its x-axis and z-axis point 
arbitrarily in inertial space. A rotation by the angle -5 about 
the z-axis yields a first interim coordinate system, which we 
denote by 1. A second rotation by the angle 6 about the y-axis 
of this interim coordinate system yields the second interim 
coordinates, which we denote by 2. Finally, a rotation about the 
z-axis of the latter system by h results in the body coordinates, 
which we denote by 6.  Note that, for simplicity, only the z-axis 
of the body system is shown in Fig. 1. The SC rotates about 
two axes. One rotation, at the rate of - e ,  is about the ZI axis, 

and the other, at the rate of h ,  is about the body z-axis. The 
sum of these rotation rates in body coordinates is as follows: 

These rate components are inertial rates resolved in body 
coordinates. We note that since 6 is designed to be constant the 
design value of the derivative of 6 is: 

6 = 0  (2) 
The transformation matrix from inertial to body coordinates is: 

cCc6ch + s5sh -s<c6ch + c<sh -s6ch 

scch scc6sh + c<ch s6sh ] (3) 
-sts6 cs  

The corresponding quaternion can be extracted best when using 
the algorithm presented in [ 11. 

The Vector Measurements 
We need to determine the relationship between the vector 
measurements that are measured by a Sun Sensor (SS), for 
example, and the angles 6 ,  6 and h that determine SC 
attitude. To do that we turn to Fig. 2, which depicts the 
orientation of the sun-sensor boresight in body coordinates. The 
SS reads the tangent of the angles a and 0 .  We wish to 
express the readings of these tangents as functions of the angles 
5 ,  6 and h defined in Fig. 1. To do that we define (Z,)b and 

(ZI), . The column matrix (Zl)b contains the components of the 

vector ZI when resolved in the body coordinates, and, 

similarly, the column matrix (Zl), contains the components of 

the vector ZI when resolved in the 

"I 
Fig. 2: Definition of the Sun Direction 

inertial coordinates. We denote the components of the 
former by a , ,  ay and a, .  It is easy to see that the 

components of (Zl), are 0, 0, and 1. Thus 

GI): =[ax ay a.] 

(Z,)f =[o 0 '1 

(Z, )b = D: (Z, 1, 

and 

Obviously 

From the last three equations and Eq. (3) we obtain 

hence 

therefore 

Note that 

ax = -s6ch 

ay = s6sh 

az  = c6 

a 

az 

a Y  

az 

tan p = 2 = -tan S .ch 

tana =- = tan6-sh 

(7) 

tana and tanp are independent of 5 . An 
inspection of Fig. 2 reveals that this is an expected result. 
Since tan a and tan p are measured quantities, the last two 
equations contain only two unknowns, therefore we can solve 
for the angles 6 and h .  For this reason even if the 
measurements contain errors we can still find these two 
angles by proper filtration as long as the measurements are 
unbiased. In order to fully know the SC attitude we need to 
know 5 too. If the gyros mounted on the inertial coordinates 
z-axis introduce no bias, then a proper integration of their 
measured outputs will yield 5 and thus we can determine the 
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SC attitude from the measurements obtained from these gyros 
and the S S .  If the gyro measurements contain bias then we ask 
ourselves whether the system is observable; that is, whether the 
SC angular dynamics (Euler) equation may add information 
with which we can still observe 5 and thus completely 
determine the attitude. To answer this question we have to 
design an estimator and examine the observability of the 
system used by the estimator. This is done next. 

3. THE FILTERS 

111.1 Filter I 

111.1.1 Dynamics Model 

In this estimator (filter) we convert the S S  measurements to a 
vector measurement, which is then connected to the quaternion 
of the SC. The dynamics model of Filter I was developed in 
[2]. Using 

[ q 4  -q, q2 1 
q, -q,  

-91 -q2 -q3 
define the system dynamics as 

(9) 

where [gx] is the cross product matrix of a general vector g, 
w, accounts for the inaccuracies in the modeling of the SC 
angular dynamics, and wq accounts for modeling errors of the 
quaternion dynamics. Both wm and wq are zero mean white 
noise vectors that are uncorrelated with one another. 

111.1.2 Measurement Equations 
The measurements are the tangent of the angles a and p ,  
measured by the S S  and shown in Fig. 4, and the z and either 
the x or they component of the body rate measured by one of 
the SC gyros. The measured quantities are contaminated by 
noise so they are not the true values but rather, a m ,  p,, oZ., 
and either ox,, or my,, , depending which gyro failed. 

111.1.2.1 Sun Sensor Measurement 
Using the two measured angles we compute a unit vector in the 
assumed sun direction as follows [4, p. 2261 

b, = 1 [::::I (11) 
Jtan ai + tan p i  + 1 

In reality tanP, and tana, contain noise; however, in the 
filter we approximate the b, measured vector as the true 
vector to the sun and a simple additive zero mean white noise 
vector, vb ; that is, 
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b, = b + v ,  (12) 
where b is the true unit vector in the true direction to the 
sun. The logic behind this simplification is that if in tests 
the filter yields satisfying results then the approximation 
is justified. Let r denote the measured sun-vector 
expressed in the reference coordinate system (this vector 
is taken from the almanac) then the relationship between 
the two vectors is expressed by 

where D is the direction cosine matrix that transforms 
vectors from the reference to the body coordinates. From 
the last two equations we obtain 

It is well known that D is the following function of the 
quaternion elements [3, p. 4141 

b = D r  (13) 

b, = D r + v b  (14) 

q: -q: 2(qlqZ +4394) 2(qlqJ -q2q4) 
2(q,q2 -q,q4) -4: +4: -4: +s: 2(qz% +4144) 
2(q,qJ 'q2q4) 2(q2qJ -qlq4) -q: -4: '4: +q: 

... (15) 

then using this relationship between D and q, Eq. (14) 
can be written as - -  

This is the measurement equation associated with the SS 
measurement. 
111.1.2.2 Gyro Measurement 
Let us assume that the gyro that measures rates along the 
x and z axes is the gyro that is still operating. The x and z 
axes rate measurements can be written as 

(18) 
a x . ,  = a x  + " a x  

a z , m  = "z + V u  

where w, and w, are the true rates, and vox and V,, 
are scalar zero-mean white measurements noise. Define 

1 0 0  

=[o 0 I]  
then from the last two equations we obtain 

We denote the measurement vector by a, where, 
clearly, a: = [ax., a,,,]. Similarly we denote the noise 

vector as by v, where VI = [vex v,,] . Obviously, if 
the other gyro is the one that is still operating, then the x 
component in Eqs. (1 8 - 20) has to be replaced by they. 



a 

111.1.2.3 The Combined measurement 
Combining Eqs. (21) and (24) we obtain following simple equation. - -  

This is the combined measurement model for simultaneous Eq. (20) stays the same; therefore, the augmented 
measurement of the operating two-axes gyro and the S S .  measurement equation for Filter I1 becomes 

111.2 Filter 11 
III.2.1 Dynamics Model 
In this filter we make use of the kinematics rule governing 
the rate of change of the sun vector. It is known that 

Dr = b  + C O X  b 
hence 

(22.a) 
4. OBSERVABILITY TESTS 

b = [ b x ] ~ ~  + Dr (22.b) 
As mentioned earlier, the vector r is known from the 
almanac, therefore r is known too. Consequently we can 
treat Dr as a deterministic forcing tinction. In our case r is 
the vector from the SC to the sun. For the SC trajectory this 
vector changes extremely slowly, therefore we can neglect 
the term in r and use 

Augmenting Eq. (22.c) with the dynamics of Filter I yields 
b = [ b x ] ~  (22.c) 

I-'[(Iw+ h)x] 0 0 w I-'(T-h) [;I=[ E] ; $I+[ ;r ]+[;j (23) 

Remark The state vector in Eq. (23) includes the sun 
vector b even though b is a measurement. Indeed, 
formally, in order to compute the rate and attitude one can 
numerically differentiate one of the components of b , and 
use it in one of the following equations (which are the 
components of Eq. (22s)) 

b, = Wzby -wyb, 

by = a,b, -O,b, (24) 

b, = a y b x  -oxby 
together with the gyro-measured or, and either a, or a, 
(depending which gyro is intact) to solve for the missing 
component of 0 .  Then use the full 61 as 'measurements' 
in an estimator whose dynamics model consists of the first 
two matrix equations in Eq. (23). This, however, requires 
numerical differentiation, which introduces noise. To avoid 
differentiation we apply the estimation approach [4] 
according to which we add to Eqs. (22.c) the differential 
equations of the variables that we want to estimate, thereby 
forming Eq. (23), and then use a Kalman filter to estimate 
those variables. 

III.2.2 Measurement Equations 
The measurement equations of Filter I1 are quite simple. 
The vector measurement of Eq. (16) is replaced by the 

Before carrying on an observability test it is necessary to 
specify the kind of filter that was used in this analysis. 
The filter that was used here is the PSELIKA (Pseudo- 
Linear Kalman) Filter [5 ] .  The idea on which this filter is 
based is as follows. Suppose that the non-linear 
dynamics and measurement equations of a non-linear 
system can be decomposed in the following way 

X = F(x)x+ BU + w (27.a) 
y = H(x)x + v (27.b) 

If F(2) is close enough to F(x) and H(2) is close 
enough to H(x) (note that we do not assume that 2 is 
necessarily close to x )  then instead of the unknown 
matrices F(x) and H(x) we can use respectively F(i) 
and H(2), which are known along the estimation 
process, and apply the linear Kalman filter algorithm to 
the measurements using the models 

X = F(2)x + Bu + w (27.c) 
~ = H ( % ) x + v  (26.d) 

In the observability analysis we use F(x) and H(x) 
where x is taken from simulation. The logic of this test 
is as follows. If when using F(x) and H(x) in the 
analysis the latter indicates that the system is not 
observable under these favorable conditions then there is 
no sense to try to estimate the state vector x of the 
system. If, on the other hand, the analysis indicate that 
the system is observable, then observability and therefore 
estimability are not assured, but it make sense to design 
an estimator, try to estimate x and see if this could 
indeed be done. 
The observability of the system models used by the two 
filters was examined using the following analysis. 
Consider (Dk, the transition matrix, which corresponds to 
F, the dynamics matrix, of either Eq. (10) or Eq. (23). 
This matrix transforms the system state vector at time 
t, , to x,,, , the state at time t,,, . If at a certain time- 
point, t,,, , the initial state, denoted by xo ,  can be 
computed, then, for our purposes, the system is 
observable. Adopting the common approach to the proof 

4 



of complete observability of a discrete linear system, we 
express the first m measurements as follows 

T O S .  

% I 
3- 

xo j = O ,  1, ...., m (28) 

where Oo(xo) = In . Form the matrix equation 

1 

0 0  (Note that in Filter I1 H is not a function of the state. That is, the 
measurement equation is linear from the start.) If there are n 
independent rows in the right hand side matrix (the observability 
matrix) in Eq. (29), where n is the number of states, then, of 
course, xo can be solved for, hence the state is observable. 
The observability test of Filter I reveals that the rank of the 
observability matrix for this filter becomes 7, and since the filter 
state is 7 too, the system is observable. It means that there are 
good chances that Filter I can estimate both the missing angular 
rate component as well as the attitude of the SC when one gyro 
fails. We note though that the measurement equation of Filter I 
is only pseudo-linear and not truly linear. This may cause a 
problem even though the observability test indicates that the 
state is completely observable. The observability matrix of Filter 
II becomes 6 and stay at 6 whereas the sue of the state vector is 
9. This indicates that the system is not completely observable. It 
means that we cannot fully estimate both the missing rate 
component and the attitude. Eqs. (24) and the discussion that 
follows that equation indicate that the missing rate can be 
observed. Therefore it is concluded that it is the attitude, which 
cannot be fully estimated when Filter I1 is used. 

5. TEST RESULTS 

Since Filter I1 can estimate only the rate vector, we present here 
only simulation runs that were carried out using Filter I. 
Simulations were run for different initial conditions and noise 
level using Filter I. Plots that resulted from a typical run are 
presented in Figs. 3 - 8. For this run the initial 5 angle was 60 
degrees, 6 was 35 degrees and h was 0. The initial estimates 
were zero for all three angles. The true Euler-angle rates were 
2.(27~)/3600rad/sec for i, zero for 6 and 0.928.(2~)/60 

radsec for i. According to Eq. (I), using these initial rates and 
angles, the true initial angular rate components were as follows: 
ox = 0.002 radsec o, = 0 radsec and a, = 0.094 radlsec. The 
estimated values of the angular velocity were zero for all three 
components. The one-sigma gyro measurement noise was 0.0 1 
deglsec and that of the SS was 0.25 degrees. In each figure we 
see the true state and superimposed on it is the estimate of the 
state. Underneath this plot there is a plot of the estimation error. 
In this run 5 is estimated quite well, but this is not always the 

case. The observability of this angle is quite poor. Filter I1 
was also run but, as expected from the observability test, the 
three attitude angles were not observable. 

0 20 40 60 80 1 0  120 140 160 180 2 0  

x Io= 
t i-- 1 7 

I 
0 20 40 60 80 100 120 140 160 180 200 

rims [sec] 

Fig. 4: The y-component of the angular velocity and its 
estimation error. 
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Fig. 5: The z-component of the angular velocity and its 
estimation error. 
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Fig. 6: The true and estimated 5 angle. 
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Fig. 7: The true and estimated 6 angle. 

6. CONCLUSIONS 

In this paper we considered a spacecraft that uses two two- 
degrees of freedom gyros and two vector measuring devices 
like a SS for measuring the rate and the attitude of the 
spacecraft. We wanted to investigate the possibility of 
estimating the spacecraft full rate vector and attitude if one 
gyro and one vector-measuring device fail simultaneously. 
In our analysis we proposed two filters for estimating the 
desired variables and carried on an observability study for 
both filters. We found that the variables were completely 
observable when one of the filters was used, and was not 
completely observable when the other filter was used. We 
tested our conclusions through simulations and found that 
indeed Filter I can estimate all states however, one of the 
attitude angles was poorly observable. As expected, Filter I1 
was unable to estimate the attitude angles. 

--- Esmlatcd ?JzET?l -200 -100 0 20 40 60 80 100 120 140 160 180 200 
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